List of references

0 Estimated as 100 % edible (net weight).
10 Missing value, content not known.
20 Estimated value.
30 Calculated value from a similar food item.
40 Old data, unknown origin.
50 Estimated as a naturally occurring zero value, not analysed.
60a Estimated as zero value when the analysed value is below the limit of quantification.
60b Analysed value is below the limit of quantification of the method. The result is outside the measurement range of the accreditation of the method.
60c Estimated value. Due to value falling in between the limit of detection and the limit of quantification, the value is estimated to be half of the limit of quantification.
61a Calculated value from the following factors for protein 17, fat 37, carbohydrate 17, dietary fibre 8 and alcohol 29 kJ/g, respectively.
61b Calculated value from the following factors for protein 4, fat 9, carbohydrate 4, dietary fibre 2 and alcohol 7 kcal/g, respectively.
70 Calculated from a specific factor for fatty acids in total fat.
71 Calculated from the percentual content of fat in a similar food item.
72 Fatty acids from dairy products calculated from specific factors (the internal standard fatty acids distribution) multiplied by the total amount of fatty acids (fat content X fatty acid factor 0.945).
73a Calculated as the sum of omega-3 fatty acids from reference 108b: Data from the industry to the Food Composition Table 2015, analysed value.
73b Calculated as the sum of omega-3 fatty acids from reference 216: Norwegian Food Safety Authority and Directorate of Health and Social Affairs. Nutrient analysis 2006-2009. Raw fish. Published report (2012); “Nutritional composition of selected wild and farmed raw fish”.
http://www.matportalen.no/verktøy/matvaretabellen/article9924.ece/BINARY/Nutritional+composition+of+selected+wild+and+farmed+raw+fish+%28PDF%29
73e Calculated as the sum of omega-3 fatty acids from reference 321d: NIFES, National Institute of Nutrition and Seafood Research. Seafood Database, November 5th 2013, www.nifes.no/sjomatdata
73g Calculated as the sum of omega-3 fatty acids from reference 400e: Swedish National Food Agency. The food database, version 2015.03.09. Online version, http://www7.slv.se/SokNaringsinnehall

Calculated as the sum of omega-3 fatty acids from reference 218: Norwegian Food Safety Authority and Directorate of Health. Nutrient analysis 2012-2013. Baby porridges. Published report (2013); “Næringsstoffanalyser av utvalgte barnegrøter 2012”. http://www.matportalen.no/verktøy/matvaretabellen/article35576.ece/BINARY/N%C3%A6ringstoffanalyser+av+utvalgte+barnegr%C3%B8ter+2013


73u Calculated as the sum of omega-3 fatty acids from reference 211: Norwegian Food Safety Authority and Directorate of Health and Social Affairs. Nutrient analysis 2003-2005. White wheat flour. Published report (2008); "The nutritional composition of Norwegian white wheat flour, 78 % extraction". http://www.matportalen.no/verktøy/matvaretabellen/article9184.ece/BINARY/The+nutritional+composition+of+Norwegian+white+wheat+flour+-+report+%282008%29+%28PDF%29


74a Calculated as the sum of omega-6 fatty acids from reference 108b: Data from the industry to the Food Composition Table 2015, analysed value.

74b Calculated as the sum of omega-6 fatty acids from reference 216: Norwegian Food Safety Authority and Directorate of Health and Social Affairs. Nutrient analysis 2006-2009. Raw fish. Published report (2012); "Nutritional composition of selected wild and farmed raw fish".


74e Calculated as the sum of omega-6 fatty acids from reference 321d: NIFES, National Institute of Nutrition and Seafood Research. Seafood Database, November 5th 2013, www.nifes.no/sjomatdata


74g Calculated as the sum of omega-6 fatty acids from reference 400e: Swedish National Food Agency. The food database, version 2015.03.09. Online version, http://www7.slv.se/SokNaringsinnehall


http://www.matportalen.no/verktøy/matvaretabellen/article35576.ece/BINARY/N%C3%A8ringsstoffanalyser+av+utvalgte+barnegr%C3%B8ter+2013


Calculated as the sum of omega-6 fatty acids from reference 215: Norwegian Food Safety Authority and Directorate of Health and Social Affairs. Nutrient analysis 2007-2008. Trans fat. Published report (2013); «Transfettsyrer i importerte oljer, vegetabilsk fett, kavring, kjeks og tillagde produkter».

http://www.matportalen.no/verktøy/matvaretabellen/article29996.ece/BINARY/Analyser+av+transfettsyrer+i+importerte+oljer%2C+vegetabilsk+fett%2C+kavring%2C+kjeks+og+tillagde+produkter


http://www.matportalen.no/verktøy/matvaretabellen/article9925.ece/BINARY/Analyser+av+svinekj%C3%B8tt+2009%28PDF%29


Calculated as the sum of omega-6 fatty acids from reference 211: Norwegian Food Safety Authority and Directorate of Health and Social Affairs. Nutrient analysis 2003-2005. White wheat flour. Published report (2008); "The nutritional composition of Norwegian white wheat flour, 78 % extraction". http://www.matportalen.no/verktoy/matvaretabellen/article9184.ece/BINARY/The+nutritional+composition+of+Norwegian+white+wheat+flour+-+report+%282008%29+%28PDF%29


Calculated from the sum of mono-/disaccharides and starch.

Calculated from the sum of glucose, fructose, lactose, maltose and sucrose.

Calculated from a specific protein factor

Calculated as the content of sodium x 2.5 /1000.

Calculated from a specific conversion factor for alcohol

Calculated as the sum of retinol + 1/12 beta-carotene.

Calculated from the factor 0.005 µg vitamin D/g fat in cream.

Calculated from estimated loss of vitamins (beta-carotene, retinol, vitamin D, tocopherol, thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin C) during heat treatment

Calculated from estimated loss of vitamins (thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12) during heat treatment

Calculated as a standard value of sodium in prepared dishes

Calculated from the percentual content of dry matter in a similar food item.

Ash calculated by difference

Water calculated by difference

Data from the industry to the Food Composition Table 1992-2000, unspecified.

Data from the industry to the Food Composition Table 2001, unspecified.

Data from the industry to the Food Composition Table 2006, unspecified.

Data from the industry to the Food Composition Table 2006 or earlier, calculated from industrial recipe.

Data from the industry to the Food Composition Table 2011, unspecified.

Data from the industry to the Food Composition Table 2011, analysed value.

Data from the industry to the Food Composition Table 2011, calculated from industrial recipe.

Data from the industry to the Food Composition Table 2011, calculated mean value of several products.
104e Data from the industry to the Food Composition Table 2011, weighted values from several products.
105a Data from the industry to the Food Composition Table 2012, unspecified.
105b Data from the industry to the Food Composition Table 2012, analysed value.
105c Data from the industry to the Food Composition Table 2012, calculated value from industrial recipe.
106a Data from the industry to the Food Composition Table 2013, unspecified.
106b Data from the industry to the Food Composition Table 2013, analysed value.
106c Data from the industry to the Food Composition Table 2013, calculated value from industrial recipe.
107a Data from the industry to the Food Composition Table 2014, unspecified.
107b Data from the industry to the Food Composition Table 2014, analysed value.
107c Data from the industry to the Food Composition Table 2014, calculated value from industrial recipe.
108a Data from the industry to the Food Composition Table 2015, unspecified/verified value.
108b Data from the industry to the Food Composition Table 2015, analysed value.
108c Data from the industry to the Food Composition Table 2015, calculated value from industrial recipe.
109a Data from the industry to the Food Composition Table 2016, unspecified/verified value.
109b Data from the industry to the Food Composition Table 2016, analysed value.
109c Data from the industry to the Food Composition Table 2016, calculated value.
110a Data from the industry to the Food Composition Table 2017, unspecified/verified value.
110b Data from the industry to the Food Composition Table 2017, analysed value.
111a Data from the industry to the Food Composition Table 2018, unspecified/verified value.
111b Data from the industry to the Food Composition Table 2018, analysed value.
120 Product information, information from nutrition labelling/internet sites, 2009/2010.
121 Product information, information from nutrition labelling/internet sites, 2011/2012.
122 Product information, information from nutrition labelling/internet sites, 2015.
123 Product information, information from nutrition labelling/internet sites, 2017.
124 Product information, information from nutrition labelling/internet sites, 2018.
130 Calculated value weighted by sales figures/market data/consumption data, for example for unspecified food items.
131 Calculated value from in-house recipe (to the Food Composition Table 2006 or earlier versions).
132 Calculated value from in-house recipe (to the Food Composition Table 2012).
133 Calculated value from in-house recipe (to the Food Composition Table 2013).
134 Calculated value from in-house recipe (to the Food Composition Table 2014).
135 Calculated value from in-house recipe (to the Food Composition Table 2015).
136 Calculated value from in-house recipe (to the Food Composition Table 2016).
137 Calculated value from in-house recipe (to the Food Composition Table 2017).
138 Calculated value from in-house recipe (to the Food Composition Table 2018).
http://www.matportalen.no/verktøy/matvaretabellen/article35576.ece/BINARY/N%C3%A6ringstoffanalyser+av+utvalgte+barnegr%C3%B8ter+2013

219 Norwegian Food Safety Authority, Directorate of Health and University of Oslo. Project 2013. Edible part of chicken. Published report (2013); “Spiselig del av kylling”.
http://www.matportalen.no/verktøy/matvaretabellen/article31139.ece/BINARY/Rapport+++spiselig+del+av+kylling

http://www.matportalen.no/verktøy/matvaretabellen/article40542.ece/BINARY/N%C3%A6ringstoff-+og+tungmetallanalyser+av+tex-mex-produkter

http://www.matportalen.no/verktøy/matvaretabellen/article40542.ece/BINARY/N%C3%A6ringstoff-+og+tungmetallanalyser+av+tex-mex-produkter

http://www.mattilsynet.no/mat_og_vann/produksjon_av_mat/bakevarer_sjokolade_snacks/rapport_næringsstoff_og_tungmetallanalyser_i_chips_og_salte_nøtter_2015.20791/binary/Rapport:%20N%C3%A6ringstoff-%20chips%20og%20salte%20n%C3%B8tter%202015

http://www.mattilsynet.no/mat_og_vann/produksjon_av_mat/bakevarer_sjokolade_snacks/rapport_næringsstoff_og_tungmetallanalyser_i_chips_og_salte_nøtter_2015.20791/binary/Rapport:%20N%C3%A6ringstoff-%20chips%20og%20salte%20n%C3%B8tter%202015

222a Norwegian Food Safety Authority. Nutrient analysis 2015-2016. Pizza. Published report (2016); "Næringsstoff- og tungmetallanalyser av pizza".
http://www.matportalen.no/verktøy/tilsynsresultater/article44704.ece/BINARY/Rapport%202015:%20N%C3%A6ringstoff%20tungmetallanalyserer%20frossetpizz

222b Calculated mean value from reference 222a: Norwegian Food Safety Authority. Nutrient analysis 2015-2016. Pizza. Published report (2016); "Næringsstoff- og tungmetallanalyser av pizza".
http://www.matportalen.no/verktøy/tilsynsresultater/article44704.ece/BINARY/Rapport%202015:%20N%C3%A6ringstoff%20tungmetallanalyserer%20frossetpizz


300 Nordnes T and Offergaard E. Næringsinnholdet i frukt, bær og grønsaker [Nutrient content of fruits, berries and vegetables]. Forskning og forsøk i landbruket [Research and experiments in agriculture], 1958.


303 Rimestad AH and Pharo AK. Spiselig del av fisk [Edible portion of fish], Matvett No. 4, 1981.


305 Øybø AM and Rognerud G. Innhold av en del næringsstoffer i produkter av bygg, havre og ris. [Content of some nutrients in products of barley, oats and rice]. National Institute for Consumer research, 1983.


[318] http://www.matportalen.no/verktøy/matvaretabellen/article9925.ece/BINARY/Analyser+av+svinekjøtt%28C%29B8tt+2009+%28PDF%29


Personal communication. Ammar Ali Hassan, Centre for Sami Health Research, Department of Community Medicine, University of Tromsø, 2011.

NIFES, National Institute of Nutrition and Seafood Research, weighted value/estimated.


Triumf, EC., Purchas, RW., Mielen, M., Maehre, HK., Elvevoll, E., Slende, E., Egelandsdal, B. Composition and some quality characteristics of the longissimus muscle of reindeer in Norway compared to farmed New Zealand red deer. Meat Science 90(2012), 122-129.


Animalia. Utredningsprosjekt 2017. Analyses of 72 pork livers (composite samples of 308 pork livers) and 22 liver pastes.


Swedish National Food Agency. The food database, version 2008.05.05. Online edition, www.slv.se

Converted value from reference 400a: Swedish National Food Agency. The food database, version 2008.05.05. Online version, http://www.slv.se


